
COP 3330: Basic Java Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Basic Java

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011

COP 3330: Basic Java Page 2 © Dr. Mark Llewellyn

The Anatomy of a Java Program

• A Java application program contains the following

basic components:

– Comments

– Reserved Words

– Modifiers

– Statements

– Blocks

– Classes

– Methods

– The main method (note: Java applets do not have a main method)

COP 3330: Basic Java Page 3 © Dr. Mark Llewellyn

Java Comments

• Comments are designed to enhance the readability of
source code.

• There are three styles of comments in Java:

– Line comments begin with // and consist of a single line only.

– Block comments begin with /* and end with */ and can cover
many lines of commenting. Convention also puts an * in the
leftmost position of every line in the comment.

– Javadoc comments begin with /** and end with */. They are
used for documenting classes, data, and methods and can be
extracted into an XHTML file using the JDK javadoc
command. We’ll deal much more with this type of comment
later.

COP 3330: Basic Java Page 4 © Dr. Mark Llewellyn

Java Comments

A javadoc

comment

A block

comment

A line (in line)

comment

COP 3330: Basic Java Page 5 © Dr. Mark Llewellyn

Java File Layout Conventions
• Sun’s layout conventions for Java source files suggest that you include the

following components in the order given:

– A block comment including the name of the file, the date, and any copyright
information.

– An optional package declaration and any include statements.

– The public class or interface declaration.

– Any nonpublic class or interface declarations.

• Within each class declaration, the class components (comments, fields,
constructors, and methods) should be laid out in the following order:

– A comment block containing class implementation details. These comments
include any information that is not appropriate for javadoc comments, such as
class invariants that are implementation specific.

– Static fields, ordered in decreasing accessibility (public fields first, the protected,
package, and finally private).

– Instance fields, ordered similarly.

– Constructors.

– Methods, ordered by functionality.

COP 3330: Basic Java Page 6 © Dr. Mark Llewellyn

Reserved Words in Java
• Reserved words or keywords, are words that have a specific meaning to

the compiler and cannot be uses for any other purposes in a Java
program.

• Note that Java is a case-sensitive language, which means that while
public is a reserved word Public is not. However, from a
readability perspective, it is best to avoid a reserved word in any form
except that for which it was intended. (Note: goto and const are
C++ reserved words not presently used in Java.)

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

R
e
s
e
rv

e
d
 W

o
rd

s
 i
n
 J

a
v
a

COP 3330: Basic Java Page 7 © Dr. Mark Llewellyn

Modifiers in Java
• Java uses certain reserved words called modifiers that specify the

properties of the data, methods, and classes and how they can be used.

Modifier

Applicable to

Explanation
Class Constructor Method Data Block

(default) yes yes yes yes yes
A class, constructor, method , or data field is visible

in this package. Default has no access modifier

keyword.

public yes yes yes yes no
A class, constructor, method , or data field is visible

to all the programs in any package.

private no yes yes yes no
A constructor, method, or data field is only visible in

this class.

protected no yes yes yes no
A constructor, method, or data field is visible in this

package and in subclasses of this class in any

package.

static no no yes yes yes
Define a class method, or a class data field, or a

static initialization block.

final
yes

no yes yes no
A final class cannot be extended. A final method

cannot be modified in a subclass. A final data field is

a constant.

abstract yes no yes no no
An abstract class must be extended. An abstract

method must be implemented in a concrete

subclass.

COP 3330: Basic Java Page 8 © Dr. Mark Llewellyn

Statements in Java
• A statement represents an action or sequence of actions.

• Every statement in Java ends with a semi-colon.

A Java

statement

Not a Java

statement

COP 3330: Basic Java Page 9 © Dr. Mark Llewellyn

Blocks in Java
• In Java, each block, begins with an opening brace ({) and ends with a closing

brace (}).

• Every class has a class block that groups the data and methods of the class.

• Every method has a method block the groups the statements in the method.

• Blocks can be nested, placing one block inside of another block.

A class block

opening brace

Corresponding closing

brace for the class block

A method block

COP 3330: Basic Java Page 10 © Dr. Mark Llewellyn

Classes in Java
• The class is the essential Java construct. To develop software in

Java, you must understand classes and be able to write and use

them. We’ve seen an introduction to classes so far, in that

classes define the objects which are the agents of action in a Java

program.

• A Java program is defined by one or more classes.

• A class is the Java mechanism for allowing the programmer to

specify a new type of object and instantiate instances (objects) of

the class.

• A class allows an information type to be designed and

implemented only once and then reused as often as needed

without having to reanalyze and rejustify the implementation.

COP 3330: Basic Java Page 11 © Dr. Mark Llewellyn

Methods in Java
• A method in Java is the specification of a behavior that an object

(an instance) of the class may exhibit.

• As we mentioned earlier, a method encapsulates an action or a

service that an object of the class can perform when requested.

public class Person

{

private String name;

public Person (String who)

{

this.name = who;

}

public String getName()

{

return name;

}

}

//create two Person objects

Person aGirl = new Person(“Debi”);

Person anotherGirl = new Person(“Eva”);

String girl1 = aGirl.getName();

//girl1 now has value of “Debi”

String girl2 = anotherGirl.getName();

//girl2 now has value of “Eva”

COP 3330: Basic Java Page 12 © Dr. Mark Llewellyn

The main Method in Java

• Every Java application must have a user-declared main method

where the program execution begins. (Note: Java applets do not

have a main method.)

• The main method is always a public static void

method.

• The main method has the following form (either one works):

public static void main (String[] args)

{

//statements;

}

public static void main (String args[])

{

//statements;

}

COP 3330: Basic Java Page 13 © Dr. Mark Llewellyn

The main Method in Java

This program simply

echos the command line

arguments passed to the

main method when

execution begin.

COP 3330: Basic Java Page 14 © Dr. Mark Llewellyn

Click Run tab, the click

Run Configurations in the

drop-down list that

appears.

You can also click the Run

icon down arrow to get to

the same place.

COP 3330: Basic Java Page 15 © Dr. Mark Llewellyn

Click the Arguments tab in

this dialog box

COP 3330: Basic Java Page 16 © Dr. Mark Llewellyn

Enter your command line

arguments in this window.

Then click Apply.

Then click Run

COP 3330: Basic Java Page 17 © Dr. Mark Llewellyn

Execution window showing echoing

of the command line arguments

COP 3330: Basic Java Page 18 © Dr. Mark Llewellyn

This program uses the Java class JOptionPane. Java’s

predefined classes are grouped into packages. The
JOptionPane class is in the javax.swing package. In

the previous example, we did not need to import the
System class because it is in the java.lang package

and all classes in this package are implicitly imported into

every Java program.

If you replace JOptionPane here (both places) with

javax.swing.JOptionPane you would not need the import

statement at the top. Import statements allow a shorthand

notation to be used to referencing a class within the package that

is imported. Try it!

The showMessageDialog method is a

static method. Static methods are invoked

by using the class name followed by the

dot operator and the method name with

any arguments.

COP 3330: Basic Java Page 19 © Dr. Mark Llewellyn

COP 3330: Basic Java Page 20 © Dr. Mark Llewellyn

Identifiers in Java
• Identifiers are used in Java (as in other programming languages)

to name programming entities such as variables, constants,

methods, class, and packages.

• The rules for naming identifiers in Java are:

– An identifier is a sequence of characters that consists of letters, digits,

underscores (_), and dollar signs ($).

– An identifier must start with a letter, an underscore (_), or a dollar sign

($). It cannot start with a digit.

– An identifier cannot be a reserved word (see page 7 for list of reserved

words in Java).

– An identifier cannot be the words true, false, or null.

– An identifier can be of any length.

• Java is case-sensitive, so X and x are different identifiers.

COP 3330: Basic Java Page 21 © Dr. Mark Llewellyn

Identifier Conventions in Java
• While identifier names should be as descriptive as possible,

there are other style/convention guidelines that good

programmers will follow to enhance the readability and

maintainability of their code.

• The naming conventions for naming variables, methods, and

classes are:

– Use lowercase letters for variables and methods. If a name consists of

several words, concatenate them into one word, making the first word

lowercase and capitalizing the first letter of each subsequent word. For
example, radius, getName, showInputDialog.

– Capitalize the first letter of each word in a class name. For example,
ComputeArea, JOptionPane, ThisIsANewClass.

– Capitalize every letter in a constant, and use underscores between words.

For example, PI, MAX_VALUE.

COP 3330: Basic Java Page 22 © Dr. Mark Llewellyn

Variables in Java
• Variables are used for representing data of a certain type.

• To use a variable, you declare it by telling the compiler the name of

the variables as well as what type of data it represents. This is

called a variable declaration. Declaring a variable tells the

compiler to allocated the appropriate memory space for the variable

based on its data type.

• There are only two types in Java, primitive types and object types.

• There are eight primitive types in Java:

– Integer types are: byte, short (2 bytes), int (4 bytes) , long (8 bytes)

– Real number types are: float (typically 6 place accuracy) and double

(typically 15 place accuracy)

– Character type: char

– Logical type: boolean

COP 3330: Basic Java Page 23 © Dr. Mark Llewellyn

Numeric Data Types in Java

Type Range Storage Size

byte -27 (-128) to 27-1 (+127) 8-bit signed

short
-215 (-32768) to 215-1 (+32767)

16-bit signed

int -231 (-2147483648) to 231-1 (+2147483647) 32-bit signed

long
-263 (-9223372036854775808) to 263-1

(+9223372046854775807)
64-bit signed

float
Negative range: -3.4028235E+38 to 1.4E-45

Positive range: 1.4E-45 to 3.4028235E+38
32-bit IEEE 754 standard

double
Negative range: -1.7976931348623157E+308 to -4.9E-324

Positive range: 4.9E-324 to 1.7976931348623157E+308
64-bit IEEE 754 standard

COP 3330: Basic Java Page 24 © Dr. Mark Llewellyn

Declaring Variables in Java
• The syntax for declaring a variable in Java is:

datatype variableName;

or

datatype variable1, variable2,…, variablen;

• Some examples are:

int x; //declare x to be an integer variable

double radius; //declare radius to be a double variable

char a; //declare a to be a character variable

• Variable of the same type can be declared together and are

separated by commas.

int x,y,z; //declare x, y, and z to be integer variables

COP 3330: Basic Java Page 25 © Dr. Mark Llewellyn

Assignment Statements and Variables
• After a variable is declared, you can assign a value to it by using an

assignment statement. In Java, the equal sign (=) is used as the

assignment operator.

• The syntax for an assignment statement in Java is:

variable = expression;

• An expression represents a computation involving values,

variables, and operators that together evaluates to a value. If the

expression is legal, it must evaluate to the type of the variable to

which the value is being assigned.

• Some examples:

int x = 1; //this is a declaration and assignment in one step

double radius = 1.0; //assign 1.0 to radius

x = y + 1; //assign to x the sum of y and 1

s = s + PI; //assignment involving variable on both sides of =

COP 3330: Basic Java Page 26 © Dr. Mark Llewellyn

Constants
• While the value of a variable may change during the

execution of a program, the value of a constant cannot

change (that’s why its called a constant!).

• A constant must be declared and initialized in the same

statement. A constant is defined in Java by using the

keyword final.

• The syntax for a constant definition is:

final datatype CONSTANT_NAME = value;

• Java convention capitalizes every letter in a constant.

COP 3330: Basic Java Page 27 © Dr. Mark Llewellyn

Numeric Operations

Java Operator Meaning Example Result

+ Addition 34 + 1 35

– Subtraction 34.0 – 1.0 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

%
Remainder (modulo

division)
20 % 3 2

Modulo division can be quite useful. For example, any even number % 2 is always 0, and any

odd number % 2 is always 1. So this is a simple way to determine if a number is odd or even.

Suppose that today is Saturday, you and your friend are going to meet in 10 days. What day is

in 10 days?

Saturday is the 6th day of the week

(6 + 10) % 7 = 16 % 7 = 2, thus you will meet on a Tuesday.

You will meet in 10 days. There are 7 days in a week Tuesday is the 2nd day of the week

COP 3330: Basic Java Page 28 © Dr. Mark Llewellyn

Shorthand Operations

Java Operator Meaning Example Result

+= Addition assignment x += 8 x = x + 8

–= Subtraction assignment x –= 4.0 x = x – 4.0

*= Multiplication assignment x *= 2 x = x * 2

/= Division assignment x /= b x = x / b

%= Remainder assignment x %= 5 x = x % 5

Java Operator Meaning Description

++var preincrement var is incremented by 1, then the new value of var is returned.

var++ postincrement var is returned (old value) then incremented by 1.

--var predecrement var is decremented by 1, then the new value of var is returned.

var-- postdecrement var is returned (old value) then decremented by 1.

COP 3330: Basic Java Page 29 © Dr. Mark Llewellyn

Numeric Type Conversions
• Sometimes it is necessary to mix numeric values of

different types in a computation.

• Java automatically converts numeric types in an

expression according to the following rules:

1. If one of the operands is double, the other is converted

into a double.

2. Otherwise, if one of the operands is a float, the other is

converted into a float.

3. Otherwise, if one of the operands is long, the other is

converted into a long.

4. Otherwise, both operands are converted into an int.

COP 3330: Basic Java Page 30 © Dr. Mark Llewellyn

Numeric Type Conversions

• You can always assign a value to a numeric variable

whose type supports a wider range of values . This is

called a widening conversion or widening a type. For

example, you can assign a long value to a float variable.

Java performs widening conversions implicitly.

• In Java. you cannot assign a value to a variable of a

type with a smaller range of values (a narrowing

conversion or narrowing a type) unless you use explicit

type casting.

• Casting is an operation that converts a value of one data

type into a value of another data type.

COP 3330: Basic Java Page 31 © Dr. Mark Llewellyn

Numeric Type Conversions

• The syntax for casting is to place the target type in

parentheses, followed by the variable or the value to be

cast.

float f = (float) 10.1;

int I = (int) f;

• Casting does not change the variable being cast.

COP 3330: Basic Java Page 32 © Dr. Mark Llewellyn

Character and String Data Types

• Java supports Unicode which by today’s standard is a

16-bit character code with a set of supplementary

characters. Unicode contains just over a million

different characters.

• A 16-bit Unicode takes two bytes (1 byte = 8 bits),

In Java, a Unicode character is preceded by a \u and

is expressed as 4 hexadecimal digits. Unicode runs

from \u0000 to \uFFFF.

• For example, the Unicode for the Greek letters α, β,

and γ are, \u03b1, \u03b2, and \u03b3.

COP 3330: Basic Java Page 33 © Dr. Mark Llewellyn

Character and String Data Types

COP 3330: Basic Java Page 34 © Dr. Mark Llewellyn

Character and String Data Types

• Most computers use ASCII, which is a 7-bit encoding
scheme for representing all uppercase and lowercase
letters, digits, punctuation marks, and control
characters. Unicode encompasses the entire ASCII
code, with \u0000 to \u007F corresponding to the 128
ASCII characters (27 = 128).

• You can use ASCII characters as well as Unicode
characters in a Java program.

• For example, the following two statements are
equivalent in Java:

char letter = „A‟;

char letter = „\u0041‟; //character A‟s Unicode is 41

COP 3330: Basic Java Page 35 © Dr. Mark Llewellyn

Character and String Data Types

• The character data type char, is used to

represent a single character. A character literal

is enclosed in single quotation marks.

char letter = „A‟;

char numChar = „4‟;

• A string literal is enclosed in double quotation
marks, So “A” is a string, and „A‟ is a

character.

COP 3330: Basic Java Page 36 © Dr. Mark Llewellyn

Character and String Data Types

• The increment and decrement operators also apply to

variables of the char type.

char ch = „a‟;

System.out.println(++ch); //prints character b

• The char type only represents one character. To

represent a string of character, use the data type called

String. String is actually a predefined class in the

Java library, just like the System class and the

JOptionPane class.

• The String type is not a primitive type, it is a reference

type (an object).

COP 3330: Basic Java Page 37 © Dr. Mark Llewellyn

Character and String Data Types

//Three string concatenated

String message1 = “Welcome” + “ to” + “ Java”;

String message2 = “Welcome “ + “to “ + “Java”;

//String Chapter is concatenated with number 2

Sting s = “Chapter”+2; //s becomes Chapter2

//String Supplement is concatenated with character B

String s1 = “Supplement” + „B‟; //s1 becomes SupplementB

//if neither operand is a string, (+) adds two numbers

//prefix and postfix operations also works with strings

message1 += “ and Java is fun”; //message1 is now “Welcome to Java and Java is fun”

// if i = 1 and j = 2

System.out.println(“i + j is “ + i + j); //output is “i+j is 12”

//to force the evaluation of i+j, encloses the operation in parentheses

System.out.println(“i + j is “ + (i + j)); //output is “i+j is 3”

COP 3330: Basic Java Page 38 © Dr. Mark Llewellyn

Casting Between char and Numeric Types

• A char can be cast into any numeric type and

vice versa.

• When an integer is cast into a char, only its

lower sixteen bits of data are used, the other

part is simply ignored.

char c = (char)0XAB0041;

//the lower 16 bit hex code 41 is assigned to c

System.out.println(c); //c is the character A

COP 3330: Basic Java Page 39 © Dr. Mark Llewellyn

Casting Between char and Numeric Types

• When an floating-point value is cast into a
char, the integral part of the floating-point

value is cast into a char.

char t = (char)65.25;

//decimal 65 is assigned to t

System.out.println(t); //t is the character A

COP 3330: Basic Java Page 40 © Dr. Mark Llewellyn

Console Input Using the Scanner Class

• While there are several ways to enter data into a Java program
while it is executing, one simple way is to use the Scanner
class.

• Java uses System.out to refer to the standard output device
(default is your terminal screen), and System.in to refer to
the standard input device (default is your keyboard).

• To perform console output, you simply use the println
method to display either a primitive value or a string to the
screen. (Note: print and println are identical except that
println moves the cursor to the next line after displaying
the string.)

• Console input is not directly supported in Java, but you can use
the Scanner class to create an object to read input from
System.in as follows:

Scanner input = new Scanner(System.in);

COP 3330: Basic Java Page 41 © Dr. Mark Llewellyn

Console Input Using the Scanner Class

Method Description

nextByte() Reads an integer of the byte type

nextShort()
Reads an integer of the short type

nextInt() Reads an integer of the int type

nextLong()
Reads an integer of the long type

nextFloat() Reads a number of the float type

nextDouble()
Read a number of the double type

next()
Reads a string that ends before a whitespace. A whitespace character is
„ „, „\t‟, „\f‟, ‟\r‟, or „\n‟.

nextLine()
Reads a line of characters (i.e., a string ending with a line separator)

Methods In Scanner Class

COP 3330: Basic Java Page 42 © Dr. Mark Llewellyn

COP 3330: Basic Java Page 43 © Dr. Mark Llewellyn

COP 3330: Basic Java Page 44 © Dr. Mark Llewellyn

Getting Input From Dialog Boxes

• We’ve already seen the JOptionPane class
at work in a previous example (see page 18).
We used this class to display a
showMessageDialog box. The
JOptionPane class also has a method
showInputDialog that can be used to get
input for a program at runtime.

• While the showInputDialog method can be
used in several different ways, for the time
being we’ll only need to know two different
ways to invoke this method.

COP 3330: Basic Java Page 45 © Dr. Mark Llewellyn

Getting Input From Dialog Boxes

• One way is using a statement like:

String astring =

JOptionPane.showInputDialog(null, x, y,

JOptionPane.QUESTION_MESSAGE));

where x is a string for the prompting message,
and y is a string for the title of the input dialog
box.

• The other way is using a statement like:

JOptionPane.showInputDialog(x);

where x is a string for the prompting message.

COP 3330: Basic Java Page 46 © Dr. Mark Llewellyn

Getting Input From Dialog Boxes

• The input returned from an input dialog box is a string. If you
enter a numeric value such as 123, it returns ‘123’. You must
convert a string into a number to obtain the input as a number.

• To convert a string into an int, use the parseInt method in
the Integer class as follows:

int intValue = Integer.parseInt(intString);

where intString is a numeric string such as ‘123’.

• To convert a string into an double, use the parseDouble
method in the Double class as follows:

doublent doubleValue = Double.parseDouble(doubleString);

where doubleString is a numeric string such as ‘123.45’.

• The Integer and Double classes are both included in the
java.lang class and are automatically imported.

COP 3330: Basic Java Page 47 © Dr. Mark Llewellyn

COP 3330: Basic Java Page 48 © Dr. Mark Llewellyn

